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First-passage-time statistics for diffusion processes with an external random force
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We present exact equations and expressions for the first-passage-time statistics of dynamical systems that are
a combination of a diffusion process and a random external force modeled as dichotomous Markov noise. We
prove that the mean first passage time for this system does not show any resonantlike behavior.
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A considerable effort has been made in recent years to
understand the many effects that can be generated by the
combination of random and periodic signals acting on a dy-
namical system. One large area of current interest is that of
stochastic resonance [1] in which a periodic driving field at
an appropriate frequency can have a dramatic effect, either
enhancing or depressing some system property otherwise
mainly determined by noise. Most stochastic resonance phe-
nomena are studied in the context of nonlinear systems, but
there is also the so-called ‘“‘coherent stochastic resonance,”
which are resonant effects that can appear in linear systems.
These are exemplified by the significant decrease in the mean
first passage time (MFPT) of a free particle out of an interval
terminated by two traps, where the particle is simultaneously
driven by an additive Brownian force and a periodic field
[2-4]. Moreover, a similar resonantlike phenomenon has
been obtained in the problem of a thermally activated poten-
tial barrier crossing in the presence of barrier fluctuations
[5-7].

In this paper we want to address a different, although in
some way related, problem of the first-passage-time statistics
of a particle driven by an additive combination of a Brown-
ian force and a fluctuation force. The Brownian force is the
result of the influence of a heat bath while the fluctuation
force accounts for a random external influence on the par-
ticle. Problems similar to this have been treated recently in
the literature for first passage times of non-Markovian pro-
cesses [8], for nonequilibrium fluctuation-induced transport
[9], for Brownian motion with superimposed shot noise [10],
for the growth of populations subject to catastrophic changes
[11], and for the thermally activated process over fluctuating
barriers [5-7]. As a model for the random external force we
choose dichotomous Markov noise (sometimes referred to as
“the random telegraph signal”) since, on the one hand, this
is the kind of applied fluctuation force used in some models
for nonequilibrium transport [9] and, on the other hand, the
random telegraph signal can be seen as a “‘random periodic
field” that has the form of a square wave with a random
frequency. This system is very similar to the models used in
Refs. [3—7], which show resonantlike behavior. In this con-
text it is interesting to analyze whether one can find some
kind of resonance behavior due to the combination of sig-
nals.

The class of problems we will consider here concerns the
evolution of the state variable X(¢) of a particle moving in a
potential V(x) under the influence of a heat bath at tempera-
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ture 7 and an external random signal F(z). In the over-
damped regime the process X(z) then obeys the dynamical
equation

X=f(X)+F(1)+ &), (1)

where f(X)=—V'(X) is a deterministic force and F(t) is a
dichotomous Markov noise taking on values *a. The ran-
dom time intervals between switches of F(¢) are governed
by an exponential density

P(r)=ne ™, 2

where A 7! is the mean time between switches, that is, N/2 is
the “average frequency” of the random square wave F(t).
The thermal fluctuations in Eq. (1) are given by &(z), which
is zero-mean Gaussian white noise with correlation function
given by

(&) =kpTo(t—1"). 3)

We also assume that the external random signal and the in-
ternal random noise are independent processes.

Let S(x,?) be the probability that at time ¢ the particle is
still in an interval (z;,z,) where z, and z, are absorbing
boundaries. In the absence of the external random wave
F(t) the survival probability S(x,t) of process (1) obeys the
equation [12]

aS(x,t) 9S(x,1) LD PS(x,1) .
at =fx) ox 2 ox? “)
where D=kyzT. The initial condition is given by
1 ifz<x<z,
S(x.0)=10  elsewhere ®)
and the boundary conditions are
S(zy,t)=5(z,,t)=0. (6)

Let us now obtain the equation for the survival probability of
process (1) when F(z)#0. To this end it is convenient to
decompose this function into two components,

S(x,t)=3[ST(x,8)+S (x,1)], @)
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where, for example, S (x,t) is the survival probability given
that F(z) is in the state +a. An analogous definition applies
for the minus state. As is well known, the functions
S*(x,t) obey the following set of coupled partial differential
equations [8,13]:

0 +
ZSt=+4a - +A(ST=ST), (8)
LS = as_+>\ St—§- 9
5 = a I ( )a ( )

where 4 is the differential operator

P 9 D &

,E——f(x)b;——z—y. (10)
The initial conditions for (8) and (9) are

SE(x,0)=1 (z;<x<z,), (11)
and the boundary conditions read

8*(z1,1)=8%(z2,1)=0. (12)

The equation for the total survival probability given by Eq.
(7) is obtained by combining Egs. (8) and (9); the final result
is the following fourth-order partial differential equation (see
Appendix A for details):

2

S
Zzs+[2>\—f'(x)]$s—azj?=o, (13)

where %2S=_%.%S. This equation has to be solved under
two initial conditions,

as
S(x,00=1, —

P =0, (14)

t=0

where z;<x<{z,, and four boundary conditions,
S(Ziat)zoa (15)

and

=0, (16)

D
[ %*——f(x) fA(x)+a®

X:Zi

where i= 1,2 (cf. Appendix A).

Let us now obtain the equation satisfied by the first-
passage-time moments, which in terms of the survival prob-
ability S(x,?) are defined by [12]

Tn(x)znf::"—ls(x,x)dt, (17)

n=1,23, ..., and Ty(x)=1. The combination of this equa-
tion with Eq. (13) followed by some integration by parts and
the use of Eq. (14) yields

PT(x) _

zﬁ,rn(x)—[zx—f'(x)]xDTn(x)—a —7

n(-x),
(18)

(n=1,2,3, ...), where %}, is the Fokker-Planck operator:
o J D 92 .
Fp=f(x) 5=+ 5 27, (19)
and

G,(x)=n[2N=f"(x) =22p]T,—1(x) —n(n— 1)Tn72(262)(-)

The boundary conditions attached to Eq. (18) are [cf. Eqgs.
(15) and (16)]

T,(z;)=0, (21)
and
D
—»é’ 73 f(X)+f2(x) a®|T)(x)
nD |
:_TTn—](Zi)’ (22)

where the prime denotes the derivative with respect to x.
Equations (13) and (18) seem to be very difficult to solve,
even in an approximate way, for a general deterministic force
f(X). Nevertheless, it is possible to obtain exact expressions
of the first-passage-time moments in some cases. One of
these is the case of the unbound particle for which
f(X)=0. We can find such a case in electrophoretic experi-
ments with a random electrical field that switches between
two constant values at random times governed by the prob-
ability density (2) [14].

Other exactly solvable models include that of a linear po-
tential although in this case the amount of algebra involved
notably increases. Therefore, and as an illustration of the
formalism, we will only treat here the unbound process.

When f(X)=0 the operator defined by Eq. (19) reduces
to %p=(D/2)d*/dx? and Eq. (18) for the first-passage-time
moments reads

D? d*T,(x) 2T, (x)
D) (@) T 0. @)
where
8n(x)=2n\T,_(x)=nDT}_,(x)=n(n—1)T,_5(x).
(24)

The four boundary conditions attached to Eq. (23) are given
by Eq. (21) and by

D2 " 2t nD ’
TTn (z))—a Tn(Zi)=“7Tn—1(Zi)- (25)

Equation (23) is a linear ordinary differential equation
whose solution can be readily obtained. When n=1 and
z,=0, z,=L the solution of problems (23), (21), and (25) is
[15]

sinhux sinhu(L —x)

X(L“X) E( D' )3/2

L= D+D’

s

(26)

sinhp L
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where D'=q?%/\ is the intensity of the random telegraph
signal, and

r=pl—pr— (27)

a ( D+D' ) 172
It is worthwhile mentioning that Eq. (23) for the MFPT was
solved for a trap at z; =0 and a reflecting boundary condition
at z,=L in [5].

We now discuss some asymptotic properties of T((x). In
this discussion it is more convenient to work in dimension-
less units. If we assume that the white noise intensity D and
the length of the interval L are finite, then the scaling will be
given by the characteristic time L2/D and the characteristic
length L. This scaling is equivalent to setting D=1 and
L=1 in Eq. (26), that is,

2

a
ho =gzl =0+ o™

sinh[ (X +a?)"2x]sinh[ (A +a?) Y(1 —x)]
. Sinh[ (A + a2 77

(28)

We distinguish two cases. (1) Suppose that a?/\<<1 with \
#0. We have from Eq. (28) that T;(x)~x(1—x), which
corresponds to the MFPT of a free first-order process driven
by Gaussian white noise. This has to be certainly the case
because in this situation the dichotomous signal is much
weaker than diffusion and the MFPT corresponds to that of
the process X(t)=&x1).
(2) Assume that a>/A>1. We have from (28) that

N 1 sinh ax sinh a(1—x)
Ti(x)=~ a—zx(l—x)+ =~

sinh a (29)

In this case, and roughly speaking, diffusion is weaker than
the dichotomous signal but, in order to obtain asymptotic
expressions for 7'(x), we must distinguish two situations
according to the order of magnitude of a/\, the average
distance traveled between switches of the dichotomous sig-
nal. (a) a/\<<¢1. In this situation the first term on the right
hand side of Eq. (29) dominates over the second term.
Hence,

A
T1(x)~?x(l—-x). (30)

This corresponds to the Gaussian white noise limit of the
dichotomous noise. This is not surprising since, as is well
known, when the average distance traveled between switches
is much less than the length of the interval the dichotomous
noise acts as Gaussian white noise with a noise intensity
given by a?/\. (b) Suppose now that a/\> 1. In this case the
second term on the right hand side of Eq. (29) dominates
over the first and,

1 sinh ax sinh a(1—x)
Tl(x)~;

@31

sinh a

Note that this expression can be written in the form
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FIG. 1. MFPT as a function of the initial position. Parameter
values: a=D/L, A=D/L?. The solid line corresponds to the com-
bination of random signals. The dashed line corresponds to white
noise alone.

T\ (x)=~3[TY J(x)+ T ,(x)],

where

is the MFPT of the system X=+a+ &(t). This is not a sur-
prising result because when the average distance traveled
between switches is much greater than the length of the in-
terval, the dichotomous noise maintains (with probability
1) its initial value F(0)=+a or F(0)= —a, which are as-
sumed equally likely.

In Fig. 1 we plot the MFPT T,(x) as a function of the
initial position x. The solid line corresponds to 7 (x) for
process (1) with f(X)=0. The dashed line corresponds to the
MFPT in the absence of dichotomous noise, that is, it repre-
sents the MFPT for an unbound process driven by Gaussian
white noise. It is interesting to note that the addition of an
external dichotomous noise reduces the escape time of the
system. This effect can be understood in the sense that the
addition of the external random force produces an increment
of the intensity of the total driving noise, £(¢) + F(t), of the
free process.

In Fig. 2 we plot the MFPT at x=L/2 as a function of the
“average random frequency” N of the random square wave
signal. We observe that 7'; is-a monotonous function of A\
and there is no sign of stochastic resonance behavior in the
MFPT. This confirms some results obtained by means of nu-
merical simulations of the discrete model [16]. Note that
T,(0.5)=0.05 as A—0, in agreement with Eq. (31), and that
T,(0.5) goes to 0.25 when A — o, which corresponds to the
Gaussian white noise limit.

Note that we have discussed the limit of 7;(x) in the
absence of external random force. The opposite case consists
in taking D equal to zero. When D=0 we have from Eq.
(26) that

L A : ‘
Tl(x)%E-Fa—z(L—x)x, (32)
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FIG. 2. T;(L/2) as a function of A. Parameter values:
a=10D/L.

provided that x# 0, L. This equation coincides with the ex-
pression of the MFPT for a free process driven by dichoto-
mous Markov noise [17]. At the boundaries, x=0, L, the
expression for T(x) given by Eq. (26) does not converge to
the value given by Eq. (32). This means that the limits
D—0 and x—0, L do not commute, as has been previously
noted [8]. The reason for this can be found in the fact that the
boundary condition (21) is only valid if D+#0. Figure 3
shows the convergence of T;(x) to expression (32) when
D—0 and illustrates the singular behavior at the boundaries.

Following an analogous calculation one can obtain
higher-order moments of the first passage time. Thus, when
n=2 the solution of the problem given by Egs. (23), (21),
and (25) reads

To(x)=A1x*(L—x)*+Ax(L—x)
+A;3[(2x—L)sinh w(2x—L)—L sinh uL]

sinh pux sinh w(L—x)
sinh uL

+A, , (33)
where u is given by Eq. (27) and

1.5

e e

1.0

AT, (x)
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FIG. 3. T{(x) as a function of the initial position (solid line) for
D=0.04\L%, a=0.5L\. Dashed line shows the MFPT for a free
system driven by dichotomous Markov noise (a=0.5L\).
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FIG. 4. Standard deviation, o7(x), of the first passage time as a

function of the initial position. Parameter values: a=D/L,
N=D/L?
A : 34
" 3(D+D")*’ (34)
L2 1 DI 3
AZ:S(D+D’)2_a_2(D+D’)
L ro\ 52
+__ ————
D (D+D’) coth L, (35)
A D'’L(2D'+D) 36
37 44*(D+D')3sinh uL’ (36)
and
L3 D' 512 DL(ZD’—D) D' 712
A=3.p7\Dr D7 2a°D’ D+D’

L*(4D'+D){ D' \3
222D DD’ coth uL. 37)
In Fig. 4 we plot the standard deviation o7(x) of the first
passage time as a function of x, i.e.,

or(x) =T, (x) = T2(x).

We note that o7(x) can be considered constant except in the
regions near the boundaries; this means that the dispersion of
the first passage time around its mean value is almost con-
stant except near the boundaries.

The behavior of o(L/2) as a function of N\ is completely
analogous to that of Fig. 2 for the MFPT and it shows that
there is no resonant effect for o(x) either. Nevertheless, the
dispersion presents an interesting behavior when we consider
or(x) as a function of the “total noise intensity’’ defined by
the sum D+D’'=D+a?/\. Thus, plotting o(L/2) as a
function of D with the prescription that the total noise inten-
sity remains const, D + a?/\ = const, we observe that the dis-
persion is not monotonic and an intermediate maximum ap-
pears (see Fig. 5). Note that the values D=0 and D=10
correspond to a system that is driven exclusively either by
dichotomous noise (D=0) or by Gaussian white noise



3244 JOSEP M. PORRA, ARMANDO ROBINSON, AND JAUME MASOLIVER 53

0.10 r

A 6,(0.5)

0.05

0.00 : : : *
0 2 4 6 8 10

D/\ L?

FIG. 5. o7(L/2) as a function of D provided that the total noise
intensity D+a?/\ is constant. Parameter values:

a’=L>\2\10— D/\L>.

(D=10). As the two driving noises have different properties,
the nonmonotonic behavior arises from this mixture. A pos-
sible reason for this behavior may be that the addition of a
small amount of noise of different nature (around either
D=0 or D=10) does not change substantially the MFPT but
increases dispersion of FPT. Therefore, it originates in both
cases an increment of the standard deviation that leads in the
maximum value shown in Fig. 5.

We finally note that starting from Eq. (23) and following
in an analogous way we can obtain higher-order moments.
However, in the case of an unbound particle, we can get a
closed expression for the Laplace transform of the survival
probability,

S(x,s)= f e *'S(x,t)dt,
0

from which all first-passage-time moments can be obtained
through the relation

&"_1§(x,s)

Tn(x):(_l)n_l asn—l

s=0

with § (x,0)=T,(x). In Appendix B we present the complete
expression of S (x,s) for the unbound process.

We briefly summarize the main results achieved. We have
studied the first-passage-time statistics for a dynamical sys-
tem that is a combination of a diffusion process and an ex-
ternal random force. We have shown that (for the unbound
process) the addition of a random dichotomous noise reduces
the escape time of the system out of a finite interval. Never-
theless, this does not mean a resonant behavior of the system
since there is no coherent motion [3] associated with any
characteristic time scale of the system (such as the mean time
between switches of the external random force). We have
also obtained exact expressions of the second moment of the
first passage time for the unbound particle. This calculation
shows a nonmonotonic behavior of the variance when
or(x) is considered a function of the total noise intensity.

This work has been supported in part by Direccion Gen-
eral de Investigacion Cientifica y Técnica under Contract No.
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APPENDIX A: EQUATION FOR THE SURVIVAL
PROBABILITY

From Egs. (8) and (9) we get

LS = o4 Al

LS=a—., (A1)
A

LA=a——2\A, (A2)
Jx

where S is the total survival probability given by Eq. (7), and
A=(S"—S7)/2. The derivative with respect to x of Eg.
(A2) and the use of Eq. (A1) yield

—FAN=a————%£8, (A3)
X a

but from the definition of the operator %4 we have

0 / — 1 Cz — ! L
5&%- Z[ﬁs f(x).%S].

The substitution of this equation into Eq. (40) results in Eq.
(13).

From Egs. (7) and (11) we see that one initial condition
for Eq. (13) is given by S(x,0)=1. On the other hand
A(x,0)=0 and from Egs. (10) and (A1) we have

aS
E :S|t=0=0’

t=0

which agrees with Eq. (14).
Let us now obtain the boundary conditions given by Egs.
(15) and (16). From Egs. (10) and (A1) we have

dA D
A )
Jt a

a
FA 5 o (79).

Substituting this into Eq. (A2) and taking into account

S(z;,t)=A(z;,1)=0, (A4)

we get
IO g 129 [ S AS
a = |x:zi Zﬁx(bj ) X:z._ a&x x=z" (A3)

but [cf. Egs. (10) and (A4)]

'—%Slxzzi: -

s

aS+D S
SO mt a2

X=2;

and
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9 oo [ , .08 %S
r?)c(“7 ) X=Z._ Ox ot f(x) ox f(x) x>
D &S
2 93|

X Zl'

The substitution of these two equations into Eq. (A2) and
some reorganization of terms finally yield Eq. (16).

APPENDIX B: SURVIVAL PROBABILITY FOR THE
UNBOUND PROCESS

When f(X)=0 we see from Egs. (13)—(16) that S(x,s)

satisfies the following differential equation:

1| cosha_L/2—cosha_(x—L/2)

D? #*S ,. %8 .
TW—[D()\-FS)-i—a ]:9;7+s(2)\+s)5=s+2)\,
(B1)
with boundary conditions
$(0,)=8(L,s)=0, (B2)
D? 38
2 w—(a +DS/2)3— =0, (B3)

where z;=0, L. The solution to this problem is

cosha _(x—L/2)cosha L/2—cosha . (x—L/2)cosha_L/2

S(x,s)= " cosha L2 +tanha _L/2 sinha_L/2 cosha L/2—A sinhaL/2 cosha_L/2 }
(B4)
where
2 _ 2 2 N2 2
at:ﬁ[D()\+s)+a + (DN +a?)?+2a’Ds], (BS)
2
a,(a”—pB)
_xlenh) (B6)
a_(a”—p)
and
4
B=5z(a*+Dsl2). (B7)
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